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Abstract
In this paper, the results of computer investigation of the percolation processes
in inhomogeneous lattices are discussed. The inhomogeneity is simulated by
a random distribution of obstacles differing in size and number. The influence
of obstacles on the parameters (critical concentration, average number of sites
in finite clusters, percolation probability, critical exponents, and fractal and
spectral dimensions of a percolation cluster) characterizing the percolation in
the system is analysed. It is demonstrated that all these parameters essentially
depend on the linear size and relative area of the obstacles.

PACS numbers: 02.70.Uu, 05.45.Df, 05.50.+q, 05.70.Jk, 61.43.Hv

1. Introduction

Percolation processes were first considered by Broadbent and Hammersley [1]. These
processes and related phenomena can occur in different physical systems. Among them
are rock fracture, fragmentation [2] and gelation [3, 4], conduction in a random resistance
grating [5] and strongly inhomogeneous media [6], and propagation of forest fires [7, 8] and
epidemics [9, 10], the electronic properties of doped semiconductors [11].

Relying on the percolation theory, Kopelman et al [12, 13] developed cluster formalism
for describing the electronic excitation in inhomogeneous systems. This model deals with
such mathematical functions as the percolation probability P∞ and the average number Iav of
sites in a cluster. The dependence of these quantities on the concentration C of sites through
which the energy migrates is determined by the scaling relationships [14]

Iav ∝ |C/Cc − 1|−γ (1)

P∞ ∝ |C/Cc − 1|β (2)

where Cc is the critical concentration of sites and β and γ are the critical exponents, which
depend on only the space dimension for the homogeneous (habitual) case. Investigations into
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Table 1. Values of critical exponents.

Isotopically Solid solution of Solid solution of Ethanol solution
Percolation mixed molecular benzaldehyde benzaldehyde of benzaldehyde

Critical theory crystals in ethanol in ethanol in porous glass

exponents 2D 3D (habitual cases) (habitual cases) (habitual cases) (unhabitual case)

β 0.14 0.41 0.13 0.13 0.41 0.25
γ 2.1 1.6 2.1 2.09 1.7 1.95

the transfer of electronic excitation energy in mixed molecular crystals [15, 16] and solid
solutions of organic compounds in low-molecular vitrifying solvents [17] have demonstrated
that the critical exponents obtained experimentally coincide with those given by the percolation
theory for two- and three-dimensional spaces (see table 1, habitual cases). However, recent
studies [18–20] of similar processes in porous matrices revealed a discrepancy between the
experimental and theoretical critical exponents (see table 1, unhabitual case). Saha et al [21]
also note that the matrix affects the topology of the energy transfer. In [18–28] this effect was
explained in terms of the inhomogeneous properties of porous glasses used as matrices. A
microscopic inhomogeneity of porous glass brings about a change in the effective topology
of the space in which percolation processes occur. In turn, this can affect the formation and
growth of a cluster from incorporated molecules.

In this work, we performed the computer simulation of the percolation process on a square
and cubic lattices with introduced obstacles differing in size and relative area (volume) in order
to elucidate the possible effect of these obstacles on the critical concentration Cc, the average
number Iav of sites in a cluster, the percolation probability P∞, the fractal dimension of an
infinite cluster and the critical exponents.

2. Computational technique

We will solve the site percolation problem, because it is the most important from the viewpoint
of energy migration in heterogeneous systems. Let us consider a lattice formed by a set of
sites and bonds. It is assumed that C is the part of sites painted black in a random manner. Any
two nearest-neighbour black sites are considered to be connected to each other. An aggregate
of black sites connected to one another either directly or through chains of connected black
sites is referred to as a cluster. Within the cluster formalism, the dynamics of the arising
percolation with an increase in C is as follows. At C = 0, black clusters are absent in the
system. At C � 1, black clusters consist of a small number of sites: single sites, pairs, triads,
etc. However, as the percolation threshold is approached, particular clusters merge together
and their average size increases. The average number of sites in finite clusters is defined by
the expression

Iav =
∑

m imm2

∑
m imm

(3)

where im is the number of clusters containing m sites. The analytical dependence of Iav on the
fraction C is unknown. Numerical calculations showed that, at C → Cc − 0, the quantity Iav

goes to infinity (see relationship (1)). At C = Cc, an infinite cluster extending over the whole
space arises for the first time. The concentration Cc at which an infinite cluster of black sites
is formed corresponds to the percolation threshold. According to [23, 24], the percolation
probability is defined as the ratio between the number of sites forming an infinite cluster and
the total number of sites in the lattice. In practice, we deal with systems with finite size and the
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value Pmax (4) coincides with P∞ (2) after the percolation threshold, because the percolation
cluster does not exist before and coincides with the maximum cluster after. In the numerical
simulation, the number of sites contained in the maximum cluster (mmax) is calculated and the
percolation probability is estimated from the formula

Pmax = mmax

L × L
(4)

where L is the linear size of the lattice. Extensive simulation and theoretical considerations
show that, near C → Cc + 0, the percolation probability decreases as the power law (2).

All the results presented in this work were obtained from simulations of the percolation
process on 200 × 200 and 100 × 100 × 100 lattices for two- and three-dimensional cases,
respectively. According to the currently available methods of computer reconstruction of
inhomogeneous condition of internal structure (see, for example, Vycor porous glasses [25]),
the inhomogeneous system was initially simulated by randomly introducing square obstacles
with a specified size into the lattice, as was done by Bujan-Nunez et al [26]. For this purpose,
a new lattice with a size of cell equal to the linear size of obstacles was constructed on the
primary lattice. For example, if we have a system with linear size equal to 200 elementary
sites and linear size of the obstacles 5, then the new lattice has the length of 40 subsystems,
and the subsystems’ linear size is 5 elementary sites. Some of the cells (subsystems) of the
new lattice were chosen as obstacles and all sites lying within the chosen cell were eliminated
(removed) from consideration. In addition, the parts which are isolated by the obstacles, were
considered as obstacles too (it leads to an increase of average linear size and concentration
of the obstacles, but due to the special checking algorithm not more than 5%). Note that
the computer experiments were performed with such inhomogeneous lattice configurations,
for which the percolation could occur in two (three for 3D space) mutually perpendicular
directions simultaneously. Figure 1 displays variants of the heterogeneous matrices with
obstacles differing in linear size and relative area, which were used in our research.

3. Results and discussion

First and foremost, we analysed how the inhomogeneity of the matrix affects the critical
concentration. In each case, the value of Cc was determined by two methods. According
to Hoshen et al [27], the critical concentration can be determined from the position of the
maximum in the dependence of the reduced average number I ′

av of sites in clusters on the site
concentration C:

I ′
av =

∑
m imm2

∑
m imm

− m2
max∑

m imm
. (5)

A similar dependence for a clear lattice is depicted in figure 2. Note that, in this case,
the accuracy of determining the critical concentration is not very high. As can be seen from
figure 2, the dependence obtained by averaging over 200 realizations (2D space) exhibits a
rather smeared maximum, even though the concentration in the course of the experiment
was changed with the step �C = 0.001. For this reason, the critical concentration for
each realization was taken as the concentration corresponding to the onset of the percolation
between opposite sides of the lattice. This approach made it possible to determine the average
critical concentration in the system. Figure 3 displays a histogram that allows one to judge the
probability of an infinite cluster forming at a given concentration of black sites. The critical
concentration determined from these data agrees closely with the value obtained using other
methods for a square lattice [7, 11, 14, 24]. The introduction of obstacles into the lattice
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Figure 1. Variants of matrices with obstacles differing in linear size and relative area.
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Figure 2. Dependence of I ′
av on the concentration of occupied sites C for a 200 × 200 square and

for a 100 × 100 × 100 cubic lattice without obstacles.

considerably affects the critical concentration: its value increases substantially (figure 4). The
strongest effect is observed for the smallest obstacles. An increase in the critical concentration
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Figure 3. Probability of percolation cluster forming as a function of the concentration of occupied
sites Cc for the percolation process on the square and cubic lattices.
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Figure 4. Dependence of the critical concentration Cc on the homogeneity fraction Sobs in the
matrix at different linear size l0 of obstacles.

in the inhomogeneous matrix can be explained in the following way. In a homogeneous
lattice, the shortest path between any two points is a straight line (without regard for the
lattice structure on minimum scales). In an inhomogeneous matrix, the shortest path can
substantially deviate from a straight line. It is clear that the larger the number of obstacles
(or the larger the relative area of obstacles) in the matrix the longer the shortest path between
any two points. Upon introduction of obstacles into the lattice, the total number of accessible
sites decreases, whereas the number of black sites required for connecting any two points in
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the system increases. Consequently, the critical concentration in the inhomogeneous matrix
should increase. Recall that, in this case, the critical concentration is equal to the ratio of
the number of black sites (this number corresponds to the onset of percolation) and the total
number of sites in the system. This effect becomes less pronounced with an increase in the
linear size of obstacles, because, at the same relative area, the larger-sized obstacles turn out to
be located in a certain lattice region. As a result, part of the matrix behaves as a homogeneous
lattice. The larger the linear size of obstacles, the greater the fraction of the homogeneous
part.

As is known, the behaviour of different quantities in the vicinity of the percolation
threshold is adequately described by the critical exponents. For the homogeneous case
the critical exponents depend only on the space dimension [14]. However, for each space
dimension, there exists a great number of different problems. According to modern concepts,
the critical exponents for all problems in a homogeneous space of the same dimension are
identical to one another. It is possible that the physical reasons for the universality of critical
exponents lie in the fact that the exponents are determined by the structure of clusters in
the vicinity of the percolation threshold. In this case, the geometric properties of clusters
play the dominant role, because they manifest themselves at large distances (of the order
of the correlation radius). These distances in the vicinity of the percolation threshold are
considerably larger than the lattice spacing (in the case of lattice problems). Therefore, the
cluster geometry does not depend on the type of lattice used in solving a particular problem.
Moreover, a particular problem can be specified not a periodic lattice but on sites randomly
arranged in space: this circumstance will not affect the structure of large-sized clusters.
However, the cluster geometry is substantially affected by the space dimension. For these
reasons, the critical exponents depend on the dimension of a particular problem rather than on
its type.

Therefore, unlike the percolation thresholds, which depend on the type of problem
involved, the critical exponents exhibit a certain universality. This leads us to the important
conclusion: if the results of physical experiment are treated within the percolation theory and
the microscopic structure is not quite clear, it is necessary, first of all, to compare the critical
exponents with the theory. Because (for the homogeneous case) they depend only on the space
dimension, and do not depend on the type of the lattice, nevertheless, the introduction of the
obstacles leads to more complex behaviour, and the exponents are no more the constants.

The dependence of the average number of sites in a cluster on the reduced concentration
C/Cc of occupied sites is plotted on a log–log scale in figure 5. As is clearly seen, this
dependence over a wide range of concentrations is well described by the power law predicted
by formula (1). The deviation from the power dependence near the critical concentration is
caused by the finite sizes of the lattice. In fact, as follows from formula (1), this quantity
should increase to infinity at the critical point, which, in principle, is impossible in systems of
finite size. The critical exponent γ determined from this dependence coincides with the value
obtained by the same method in [27], and is slightly less than the exponents derived from other
techniques [14]. Figure 6 displays the dependence of the critical exponent γ (determined in
a similar manner) on the linear size of obstacles at different values of their relative areas. It
can be seen that the critical exponent for obstacles with l0 = 1 coincides with the exponent
for the homogeneous lattice. As the linear size increases, the critical exponent first increases
(to l0 = 10) and then decreases. An increase in the relative area of obstacles into the lattice
brings about separation of sites belonging to the same cluster. The critical exponent γ

characterizes the cluster growth with an increase in the concentration. The larger the size and
the larger the relative area of obstacles, the higher the concentration at which sites begin to
coalesce into clusters and small-sized clusters merge into large-sized clusters. To state this
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Figure 5. Dependence of log Iav on log |1 − C/Cc| for square and cubic lattices.

differently, an increase in the average cluster size with an increase in the concentration is
more pronounced than that in the system with a homogeneous matrix; in fact, this corresponds
to an increase in the critical exponent γ . It is worth noting that all the lattices studied are
characterized by a linear dependence similar to that depicted in figure 5. The observed decrease
in the exponent γ for matrices with obstacles of size l0 = 20 can be explained by the finite
sizes of the lattices. As can be seen from figure 1, an increase in the size of the obstacles
brings about the transformation of the inhomogeneous matrix into a matrix with a specially
confined structure. This is essentially pronounced for lattices with the maximum relative area
of the obstacles used in the computer experiment. Numerical simulation revealed that, for 2D
matrices at l0 = 20 and Sobs = 38%, an increase in the lattice size to 400 × 400 is accompanied
by an increase in the critical exponent γ to 2.94 (for 200 × 200 lattice, γ = 2.50). Note that an
increase in the size of the obstacles to 40 results in a further decrease in exponent γ (figure 7).

A more intricate situation arises with the dependence of the percolation probability on the
concentration of occupied sites. According to formula (2), this dependence on log–log scale
should be represented by a straight line whose slope corresponds to the critical exponent β

. Unfortunately, the treatment of our results for the square lattice demonstrated that this
dependence does not exhibit a linear behaviour with the appropriate slope over the entire
range of concentrations (C > Cc). Furthermore, an analysis of the available data on this
problem also showed some disagreement regarding the range of applicability of relationship
(2). In particular, Hoshen et al [27] observed the scaling dependence (2) for a 4000 × 4000
triangular lattice only in the (C − Cc) concentration range from 10−4 to 2 × 10−2. At higher
concentrations, the dependence deviated from linear behaviour. In our simulation, the results
obtained in this concentration range strongly depend on the finite size of lattice, as is the
case with the average number of sites in clusters. Moreover, Hoshen et al [27] observed a
linear dependence for a 400 × 400 square lattice in the concentration range from 2 × 10−3 to



8 S A Bagnich and A V Konash

0 5 10 15 20
2,0

2,2

2,4

2,6

2,8

3,0 2D  S
obs

=10%
 S

obs
=20%

 S
obs

=30%
 S

obs
=38%

l
0

0 5 10 15 20

1,8

2,0

2,2

2,4

2,6

2,8 3D
 S

obs
=15%

 S
obs

=30%
 S

obs
=45%

 S
obs

=60%

l0

Figure 6. Dependence of the critical exponent γ on the linear obstacle size l0 in lattices at different
relative areas of the obstacles Sobs.

7 × 10−2, even though the slope corresponded to β = 0.19. Therefore, relationship (2) is valid
only in a very narrow concentration range in the vicinity of the percolation threshold. However,
reasoning from the results of investigation into the transfer of electronic excitation energy in
mixed molecular crystals, Kopelman [13] made the inference that the concentration range of
applicability of the critical exponents for the energy migration is considerably wider than that
for any other critical phenomenon in physics. From the viewpoint of the energy transfer, it is
important that the dependence of the probability of trapping an exciton (which is governed by
the percolation probability in the range of concentrations higher than the critical concentration
[12]) on the reduced concentration C/Cc of activator molecules in the inhomogeneous matrix
is steeper than that in the homogeneous matrix [20]. In terms of the critical exponents, this
corresponds to a decrease in the exponent β.

Figure 8 depicts the dependence of the percolation probability on the reduced
concentration for the lattices with different fractions of the obstacles. It is clearly seen
that the introduction of obstacles into the lattice is attended by a more rapid increase in the
percolation probability with an increase in the concentration. The observed effect becomes
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the linear size l0 = 1 at different fractions of the obstacles in the matrix.

less pronounced with an increase in the linear size of obstacles. However, our investigations
showed that, in any case, the presence of obstacles in the matrix leads to a change in this
dependence.

The fractal dimension df is a principal characteristic of the infinite cluster at the critical
point. Mandelbrot [29, 30] was the first to introduce the notion of fractal. Subsequently, he
specified the tentative concept [31] and defined the fractal as a structure consisting of parts
that, in some sense, are similar to unity [32]. However, until presently, there has been no
rigorous and complete definition of fractals. An infinite cluster at the critical point exhibits
a statistical self-similarity [24]. The fractal geometry of the infinite cluster and its statistical
self-similarity are interrelated. This interrelation leads to the following relationship between
the mass and the linear size of the cluster:

M = ldf . (6)
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Figure 9. Dependence of log M on log l for the square and cubic lattices free of obstacles.

Stanley [33] and Sokolov [34] showed that the fractal dimension in virtually all physical
problems is defined as the exponent in relationship (6). At present, the fractal dimension
is determined using different methods [35]. One of them is the embedded square method
proposed in [24]. In essence, this method is as follows. In the object under study, a central
point is chosen in a random manner and several embedded squares are arranged around this
point. The number of sites in each square is counted, and the dependence of the object
mass (the number of sites) on the linear square size is constructed. This dependence is used
for calculating the fractal dimension. Forrest and Witten [36] proposed to bring the central
point into coincidence with the centre of gyration of the studied object in order to improve
the reproducibility of the results. In our work, we also determined the fractal dimension
of the infinite cluster by using the embedded square method. To accomplish this, among all
the possible realizations, we chose clusters whose centres of gyration were close to L/2. It
should be noted that the introduction of this critical concentration did not affect the statistics
obtained for the critical concentration (figure 3). The results presented below were obtained
by averaging over 300 different clusters. For lattices with large-sized obstacles, additional
averaging was performed over 20 configurations of distribution of the obstacles in these
lattices.

The dependence of the cluster mass (the number of sites) on the square size is plotted on
a log–log scale in figure 9. It is easy to see that the dependence exhibits a linear behaviour
beginning with square sizes of the order of 20 × 20. The fractal dimension determined from
the slope of this dependence is equal to 1.8. This value is slightly less than the exact dimensional
df = 91/48, which was calculated in [7, 14] in terms of the scaling theory. This difference
can arise for two reasons. First, as was shown in [35], the fractal dimension determined by
the embedded square method is underestimated compared to that obtained by other methods.
Second, the underestimated value of df can be dictated by the finite size of the lattice. It
is obvious that the percolation cluster on a finite lattice is only a part of an infinite cluster
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Figure 10. Dependence of the fractal dimension of a percolation cluster on the fraction of the
obstacles Sobs in the matrix at different linear size l0 of obstacles.

on the infinite lattice for which the exact dimension was deduced. Consequently, particular
sites that are not involved in the percolation cluster on the lattice of size L, in actual fact,
belong to the infinite cluster, because they are connected to it through bonds lying outside
the fragment under consideration. In any case, our prime concern is with the influence of
the inhomogeneous properties of the lattice on the fractal dimension rather than in its absolute
value. This influence is illustrated by the data shown in figure 10. As can be seen, no change
in the fractal dimension is observed for lattices with the linear size of the obstacles l0 = 1.
The value of df decreases for lattices with larger-sized obstacles only in the case when
their fraction in the system is sufficiently high. The effect is enhanced with an increase
in the obstacle size. This behaviour can easily be explained with due regard by the fact that
the percolation cluster is a strongly porous object. Therefore, when the size of obstacles
and their relative area are small, the probability that obstacles occupy these pores is high.
As the size of obstacles and their fraction in the matrix increase, they begin to affect the
geometry of the percolation cluster and this effect manifests itself in a decrease in its fractal
dimension.

Another dimension associated with random walks on a cluster is a spectral dimension ds.
In [37], it has been shown that at the percolation threshold the number SN of distinct sites
visited during an N-step random walk on an infinite cluster varies asymptotically as

SN ∼ Nds/2 ds = 4/3 (7)

in all Euclidean dimensions (Alexander–Orbach hypothesis) [38].
Here we are reporting our simulation investigations of random walks on a percolating

cluster for a two-dimensional lattice. To obtain this result for every lattice 2 × 102 different
realizations of percolation cluster were used. For every percolation cluster 102 statistics of
random walks were investigated. Initial position and direction of jump of the walk have been
chosen in a random manner. Random walks that never need to cross the boundary sites were
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considered. The realizations of the walk with initial site attended to the boundary of the lattice
were not taken into account.

In our investigation we obtained the values of spectral dimension close to 4/3 for lattices
differing in relative area and linear size of the obstacles (figure 11). It is seen from figure 11
that the introduction of the obstacles to the lattices does not strongly affect ds. This result is
in a good agreement with the Alexander–Orbach hypothesis.

4. Conclusion

Thus, the results obtained in this work confirm the assumption made earlier (on the basis
of the available data on the energy transfer in disordered system, specifically, in matrices
with different structures on the microscopic level) that the inhomogeneous properties of
matrices substantially affect the percolation process. The introduction of the obstacles causes
strong influence on all percolation parameters in both two- and three-dimensional spaces.
Increase of the relative area of the obstacles leads to increase of the critical concentration
value, increase of the critical exponent γ value, increase of the growth rate of percolation
probability with increase of the concentration and decrease of the fractal dimension of
percolation cluster. In turn, increase of the linear size of the obstacles (with the same
relative area of them) results in a fall in the critical concentration value, increase in the
critical exponent γ value, a fall in the growth rate of percolation probability with increase of
the concentration and decrease of the fractal dimension of percolation cluster. As a result, our
investigation clearly shows that the critical exponents and the fractal dimension depend on
the inhomogeneous macroscopic structure (linear size and concentration of the obstacles) of
the system. Only the spectral dimension of the percolation cluster does not depend on the
presence of the obstacles in lattice, which accords with the concept of super universality for
this parameter.

In general, our research demonstrates that all percolation parameters essentially depend
on the linear size and relative area of the obstacles. Nevertheless, the question about the
influence of the finite size of the systems on the precision of the results, especially on the
critical exponents, is still open, because only investigations for the systems with various linear
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sizes (it is better to have bigger ones) can give a more exact answer, and we hope that our
work only opens discussion about this problem.
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